

Survey on Continuous Delivery

46% thmk their
competitors

have adopted
Continuous

Delivery

(assembla

• At I..., ..,.... pr<>ject.

Non-SaaS companies
are doing Continuous
Delivery as well

__01_"""",
....0_... .
-....~~ boj;,;
W'_.'~.OI<-

Hjghe, customer
......lactlOll

Bett", qua~1y of product

R<tdueed ca,t
of dlwrJepmant

FaSler I,m.. to markol

Ranking of Benefits

Nop/MI'130
/o

lhingHor
_proj&cts 37%

PI.".;n phce _ 18%

Adoption by All Company Types

w..... to mo....o .~'"""";",,,,.., de"'-'Y 7 -/0

Why Continuous?
• You provide an online service. Competitive pressure will

force you to continuous: Office 365 vs Google Docs.

• You provide any service with software inside

• Your release times are getting longer, or the release
process is stressful

• You are developing a new product with lean startup and
MVP techniques

• You have a big project with a lot of contributors

(assembla

Ways to Scale

Serum + SAFe
• Add more hierarchy

• Hold big meetings and
teleconferences

• Block everyone into one
cadence

• Coordinate big releases

Top Tech Companies
• Automate management,

as well as testing and
deployment.

• Communicate peer to
peer

• Unblock! teams to move
as fast a possible

• Release early and often.
Separate release from
launch

assembla

Assembla in 2011

• "Scrumban" with iterative releases, but continuous

planning to accommodate a distributed team.

• Releases took longer as system got bigger and there
was more to test. 2 weeks -> 3 weeks

• Bugs in production. 2 days for fixes. Stressful

• Competitors achieved faster velocity with continuous

delivery

(assembla

Research
• Made a study of continuous methods with our own team,

customers, and tools.

• Looked at other companies:

• HubSpot

• Edmunds.com

• oDesk

• Constant Contact

• Google

(assembla

Results
• Assembla now releasing about 250 times per month.

Fewer bugs. Much less stress.
Rt!tilsel per Month

•
•
•
•
•
•..
"
:~~::::::--
///////1////1//////

• Unblock! book (coming soon)

assembla

'\/VaterfalljSprint to Continuous

Doc

Lag Automate

Test

Automate
& BlendCI&CD

ProgramPlan

Skip

End up with Releases

Pull Program Launch

, Measure

(assembla

Serum Sprint

Collect

Ideas

Validate and
Sort Deliverables

Expand
stories and
estimate

tasks •

Select a

Sprint Plan
Close Sprint

Work on

tasks ~ C::::::::::1] ~~:~;::C::::::::::1 velocity

... L --':f! Into next
sprint

.'
(assembla

Scrumban Iteration

Collect
Ideas

)

)

Validate and

Sort Deliverables

Pull Deliverables

When Ready

)I I
I

}I I
I

)I I

Stabilize

Release

ITriage
l}ll =4

Into next

release

(assembla

Kanban / Continuous

Collect
Ideas

)

)

)

Validate and

Sort Deliverables

Pull Deliverables

When Ready
Release Features

Continuously

(assembla

The big question: How to test?

• We release software in batches so that we can test it.
That is the whole reason for doing it. We test
software "release candidates" to make sure
everything works together.

• In continuous delivery, we might get as little at 10
minutes to test a release candidate

(assembla

Test Layering

Unit tests in the development environment

1

Monitoryour released software: Errors, Usage

volume, usage patterns, user feedback

ISwitch new features and architecture

IQA System with Human test consultants

Code review: Both a manual test, and a place to

ask for test scripts. t
Continuous integration: Run automated tests 0 9ce
before using human review time \e~ 1><:'-

'"====================~ 'l;:-e 0-r 0 e,1>
S><.,.'b 1>"7

\e:.e

(assembla

9 (sparse) Layers at Edmunds

Check-in~ Static code
scanning

~ code coverage
-~)o unit tests --.J

ymonitor

r- in;~ke +- repository.,r build(parallel)_----...J

Post deployment I) smoke
deploy(parallel) --+) checks __ tests

Compatibility ~o;-- regression tests

Metric ~ pr ote
monitors 0 m ..,

~ Smoke
test

(assembla

Feature switches
• Constant Contact showed a new UI for Agile New England

(at nonprofit rates). Showed the old UI for Assembla (at
for-profit rates). They had installed a feature switch that
showed the new UI to specific users.

• I have seen similar behavior in ATM's and cars. Switched
areas on chips.

• Separate release from launch. Developers run ahead of
marketing, and we learn before launch. Unblock! PM's
control what gets unveiled.

(assembla

Feature Switch and Unveil

CHidden)

Programmer sees a change locally.

Change is tested in the main

version but not seen.

Test
Story Owner and testers see the

change on test systems.

Insiders see it and use it. Story
(Beta Owner can show it to selected
"- users for feedback or AlB testing.

UNVEIL!
The big event. Communicatewith

all users. Measure reaction.

z z 0
0 0 ~

~ m
0 "0 n
~ m 0
"" n 0-,,

~ m
c <~ ~

~ m m,
~

~ ~
~

"" <T 0
<T C ~

,
~ 0-
~ ~

n
OJ
m
~

(assembla

Go Both Ways

.--

Increase Quality (more layers, longer beta)

Increase Velocity (less layers, faster unveil)

Velocity

(assembla

Strategy

TASKS
Team &
Project
Mgmt

~Agile~worh with

Agile consultants tasks and teams
like togo here

CODE
Build
Test

Deploy

Build
Test

Deploy

CODE
contribution

TASKS
Team&
Project
Mngmt

The new agile brings in a surge of innovations
around coding and testing workflows (assembla

Product Owner -> Story Owner
ann ng

I· ""'""""-.....-""'"I-'"t·-·,1l f..t~~..-
&

)"J Active StorY_...
,~

~ §
\I...... ""'""""- <iNr >torv

1...... _.00>/1 Development System

I~--·I
V ~ Mo<;'up P'o,ot,pe ,_.

I - I ~
_.

Do"i",," , l'
V ! !I """"oct"", I

§ Q§ - Deployed Code ;1
K AlpI\o to,t H- COn&m ,,"'> ~~

K --..- ...,."- ,..,...-V

p

I -" I

"-""'...,."- --
" (lssembla

Code Contribution Patterns
Manage code if possible. People are hard to manage and

can't be automated. They want to contribute.

• Centralized continuous delivery

• No branches, finds and fixes problems as early as possible

• Distributed continuous delivery

• Release every change with its own branch and test

• Temporary branches

• Combines benefits of centralized and distributed

• MAXOS

• Use centralized continuous integration to manage a
massively scalable IT system

(assembla

Centralized CljCD
Contributor Commits - "as early as possible" to find problems

QA Testing

)

Continuous
Integration tests

<>Fail- alarm
Pass

Release Candidate I
Test System

Release >

1

(assembla

Continuous delivery at Edmunds.com

CI
BUild •••

-~ ..
••••
: Walch
•
••

DEV ~ QA ~ PROD
Deploy Deploy Deploy

" /
(Test/Monitoring)

Outside view: uit's automationM

Inside view: "it's confidence" edmunds_
(assembla

Distributed Continuous Delivery

Pass Final
AutoTest?

Peer review merge requests

QA

Consults

Contributor Commits, ,
Branch

or Fork

Merge bac
Curren

1-+ Deploy

t
Other contributions
merged and released
"as late as possible"

Deployed version

(assembla

Role: Developer
• Developers have more power and responsibility.

• Developers have more responsibility for testing.

• Developers (not QA or PM) decide when to release.
This is a strong finding.

• Incentives are correct. Developer might have to

come back from Friday night beers to fix a problem.

This provides a motivation to make good decisions
and automate testing.

• Features can be released but hidden. Product

Managers and Marketers will unveil when they are
ready. Unblock! (assembla

Role: QA
• QA is a consultant when asked, not a required gate

• QA gets more respect. Developers have to ASK for
service.

• Developers do more of the testing work. They should
organize reviews and automated tests so that bugs don't

go through into the manual test process.

• QA has more time to investigate usability

• QA monitors productivity and quality metrics

(assembla

Role: Product Manager/Owner

• Batch -> Continuous

• Requirements -> User Experience

• Strategy -> Measurement

• Usage measurements are so important, so underutilized

• Double your productivity

(assembla

The Services Megatrend

Desktop q WebAppqCloud Services

Service

Service

c: ")

.:Y
App

[DB J
assembla

Scale it like Google
• 15,000 developers, 5,000 projects, one current version of the

code (2013). They can go from an idea to a release in 48
hours

• Vast Internet system divided into thousands of "services"

• Most programming done by teams of 3-4

• Centralized process with single version of the test system
run 100 million test cases daily

• Before developers release a change, they test it with the
most recent version of all the other services. If a test script
finds conflicts, it tells developers who to contact to resolve
them

(assembla

Matrix of Services - MAXOS
Test as one system

(assembla

ach team
releases
hen ready

Hundreds

f releases
per day

Feedbackon speed, errors, usage, and requests

<'> <'>
Service team

~ltegratio~ 0roductio~

/
\... test env ...,I \.. service ...,I

Current "- E

Work

\\ W

~ltegratio~ 0roductio~
Service team

\... test env ..,.I \... service ...,I

"- ./
Prioritized

0
Backlog

Service team
~ltegratio~ 0roductio~
\... test env ...,I \... service ...,I

"- V /0

Coordinate without big meetings
Continuous Integration between

latest dev version of each service

D
Service team

~ltegratio~
\... test env ...,I

/Current

Work

\\ ~ltegratio~
Service team

\... test env ...,I

Prioritized
Backlog

Service team
~ltegratio~
\... test env ...,I

V

• Continuous integration
helps teams coordinate.

• See dependencies
between "producers"
and "consumers"

• Errors and conflicts show
related team contact info

• Meetings and changes
negotiated between two
teams, not many

(assembla

u

Teams are largely self-managing
pta 50% of work

~ltegratio~ - J;,roductio~
~

from backlog , Service team
\.... test env ...,I ~\.. servin' ..,.)

current/ "-
Work

Feedback: quality, reliability, r;,roductio~

speed, usersupport \"" service ..,.)

At least 50% of work is self-planned
r;,roductio~

Problems get fixed quickly
\"" service ..,.)

Prioritized
Backlog

Production r;,roductio~
Server \"" service ..,.)

(assembla

Scaling

<'> <'>
Service team

~ltegratio~ 0roductio~

/
\... test env ...,I \... service ...,I

Current "- E

Work
w

~ltegratio~ 0roductio~
Service team

\... test env ..,.I \... service ...,I

"- ./
Prioritized

Backlog , ,

Add capacity fast with
Single-function programming t

ach team
releases
hen ready

eams

(assembla

Hubspot - Great at Mid-scale

• Transformed a monolithic app to 200 services over one
year

• 3-person programming teams. Each of 20 teams is
responsible for about 10 services

• Dev teams responsible for design, programming, testing,
release, monitoring, and responding to production
problems. No full-time QA. Shared PM and UX.

• Lot's of tooling and dashboards to help teams deploy,
manage, and monitor their services

• Feedback from customer support also grouped by team

(assembla

SAFe (Copyright Dean Leffingwell)

Scaled Agile Framework' Big Picture

._....
••-

_.---- •

Business Epics

Architectural Epics ~ ~~

PORTFOLIO VISION

==---=---

I ~.
_.0

:::: --
U U

..--
~-

I~·
.. --- ..

U U
_..,-,-I • sembla- ,-

•
M.. .

.~

--

---to
-

,\
• •

:-';;;........-11111..,

Ways to Scale
Serum + SAFe
• Add more hierarchy

• Complex multifunction
teams

• Hold big meetings and
teleconferences

• Block everyone into one
cadence

• Coordinate big releases

Top Teeh Companies
• Automate management,

as well as testing and
deployment.

• Dev-Iead teams

• Communicate peer to
peer

• Unblock! teams to move
as fast a possible

• Release more frequently

(assembla

Competing with MAXOS
The secret weapon that Silicon Valley is using to

disrupt and destroy competitors

• Leading retailer deploys changes to their monolithic
online ordering app once every six weeks. Ops holds for

three weeks to make sure the complete system is stable.

• Amazon has thousands of services and more than 1000

service teams. They release something about once every

11.6 seconds. In the time that Retailer X takes to try one
new release, Amazon has made 300,000 changes.

• Amazon hosting competitor: "It's an emergency".
(assembla

Business

Gps

Self-Service Controlled

PRODUAT

RELEASE TRAIN

TEST I INTEG STAGING

======~CONTINUOUS DEUVERY

DEV

From Steve Brodie and Rohit Jainendran

Core IT and Fast IT

• 'ar\<.etil\\', Public Cloud
IV' i'co

API shtell]

~=~

Core IT
and service

assembla

Incentives for Continuous Flow
You don't need culture change. You only need to release
more frequently

1. If you do code review, you can get automated. No
browbeating and cajoling is required. Developers will
ask for tests when they review.

2. If developers decide to release, they will take more
responsibility for testing and automated tests.

3. If you release more frequently, developers will quickly
learn not to break the build

4. If PM's take unveil and measurement responsibility,
they will make better features

(assembla

Our Master Plan

1. Release more frequently

2. Improve

Releases per Month..
•..........

(assembla

-

www.continuousagile.com!1.(nb lock

Some terms

• Continuous Integration - run automated tests on every

code change

• Continuous Delivery- Update releasable version at least

once per day, and release when ready

• Continuous Release - Release every change (typically for

SaaS)

• Continuous Agile - Kanban task management, continuous

delivery code management, and continuous product
management (metrics + story owners)

• MAXOS - All of the above with many unblocked services

(assembla

Single-functional Scales Faster
• Building multi-functional teams is complicated, requires

donations by multiple departments, and takes time and
coaching and "culture"

• MAXOS service teams are typically run by developers,
who pull in other experts as needed. Often three people.
Can start up instantly with only one tech lead.

• You need system operations training and capacity for any
new components

• Maxos service teams take responsibility for operating
their services

(assembla

In this session
• Continuous Agile management

• Code contribution and continuous delivery

• Changing roles - Dev, QA, PM/PO

• Scaling - MAXOS (Matrix of Services)

• Adoption, Simplified

(assembla

	Slide001
	Slide002
	Slide003
	Slide004
	Slide005
	Slide006
	Slide007
	Slide008
	Slide009
	Slide010
	Slide011
	Slide012
	Slide013
	Slide014
	Slide015
	Slide016
	Slide017
	Slide018
	Slide019
	Slide020
	Slide0209
	Slide021
	Slide022
	Slide023
	Slide024
	Slide025
	Slide026
	Slide027
	Slide028
	Slide030
	Slide031
	Slide032
	Slide033
	Slide034
	Slide035
	Slide036
	Slide037
	Slide038
	Slide039
	Slide040
	Slide041
	Slide042
	Slide043
	Slide044
	Slide045
	Slide046
	Slide047
	Slide048
	Slide049

